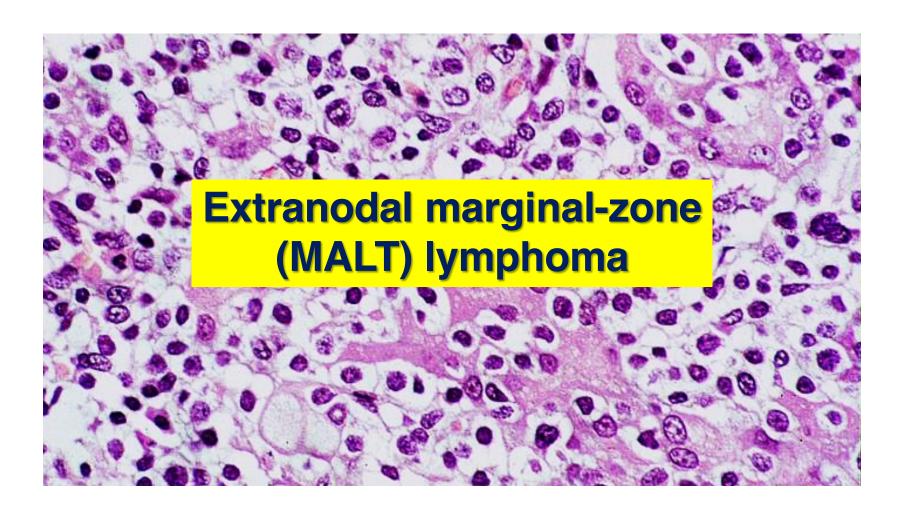
TREVISO 7-8 NOVEMBRE 2025

Biology of MALT lymphomas

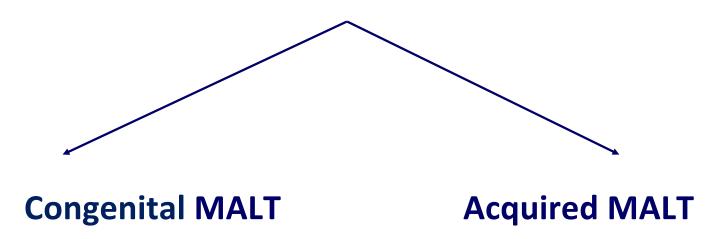
Stefano Pileri

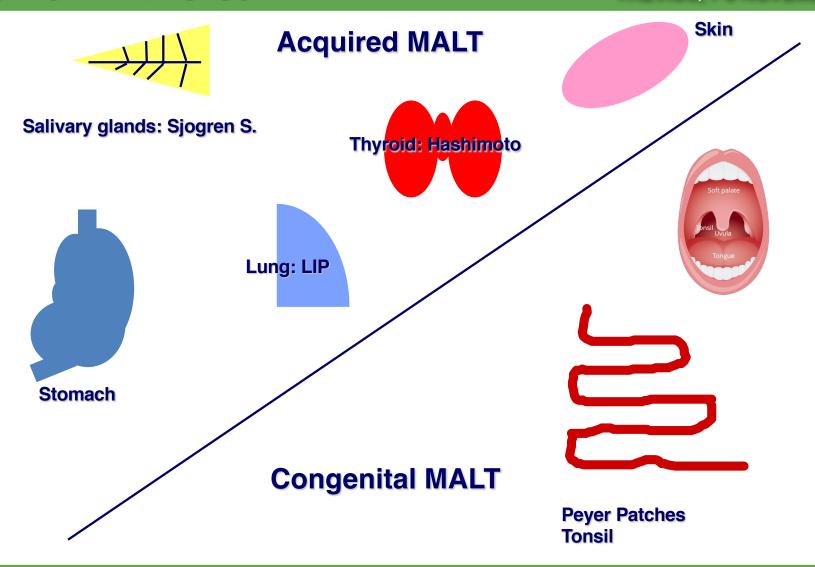
Università di Bologna/Istituto Europeo di Oncologia

Disclosures of Stefano Pileri


Company name	Research support	Employee	Consultant	Stockholder	Speaker bureau	Advisory board	Other
Eli Lilly					+		
BeiGene					+		
Stemline					+		
Roche					+		
Takeda					+		
Diatech					+	+	

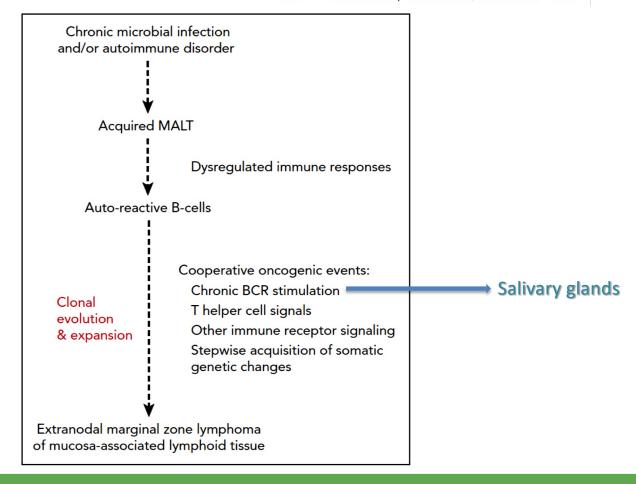
MBL-MZ


MZL in 15% of cases


Meaning???

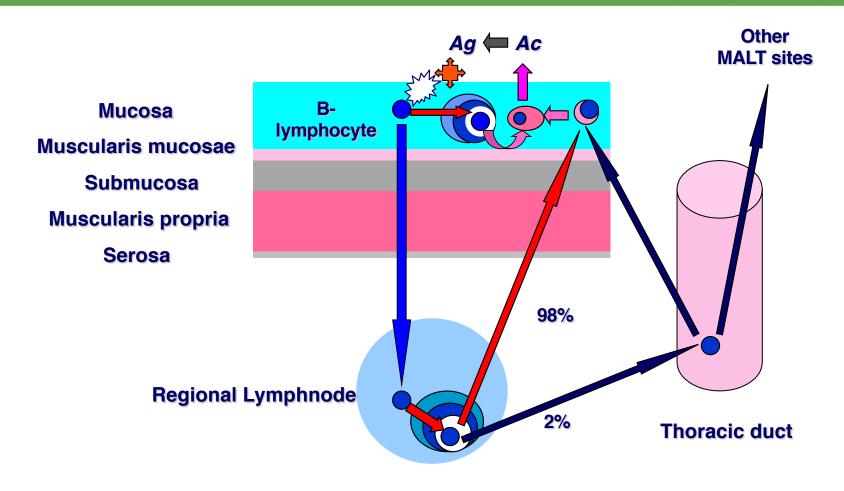
Next Classification

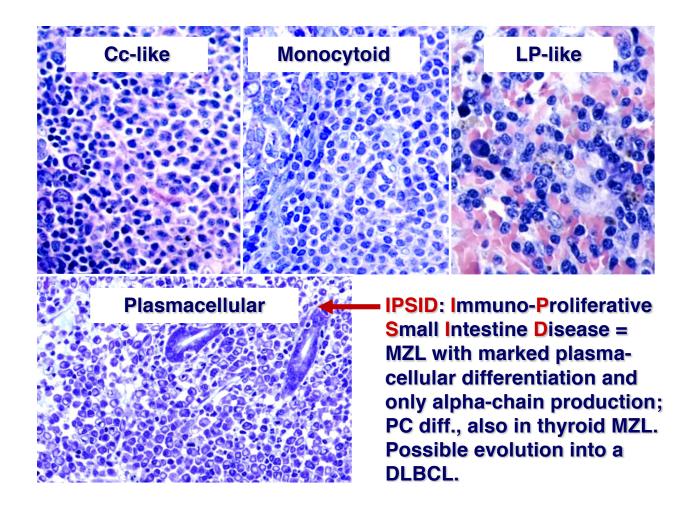
MALT = <u>Mucosa-Associated Lymphoid Tissue</u>



EMZL at various sites: learning from each other

Ming-Qing Du


lood 8 MAY 2025 | VOLUME 145, NUMBER 19 **2117**


Extranodal Marginal Zone Lymphoma

- Commonest MZL form (70%), representing 5-8% of all NHLs.
- Mostly in patients in the 7th decade (M/F=1/1).
- Most cases present as localized disease (Staged IE or IIE).
- BM involvement in 10% of cases.
- Widespread dissemination very rare.
- Possible regression.

TREVISO, 7-8 NOVEMBRE 2025

Local recirculation based on the relationships between the homing receptor $\alpha 4\beta 7$ and the adhesion molecule MAdCAM-1

Phenotype

CD20+, CD79a+, IgM+/IgD-, Ig light chain restriction+*, IRF4+*

IRTA1+(LEL)

CD5-(+20%), CD23-, CD43-(+30%)

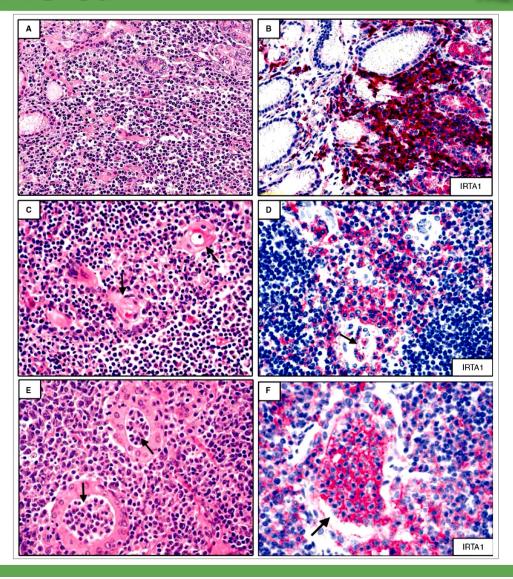
Cyclin D1

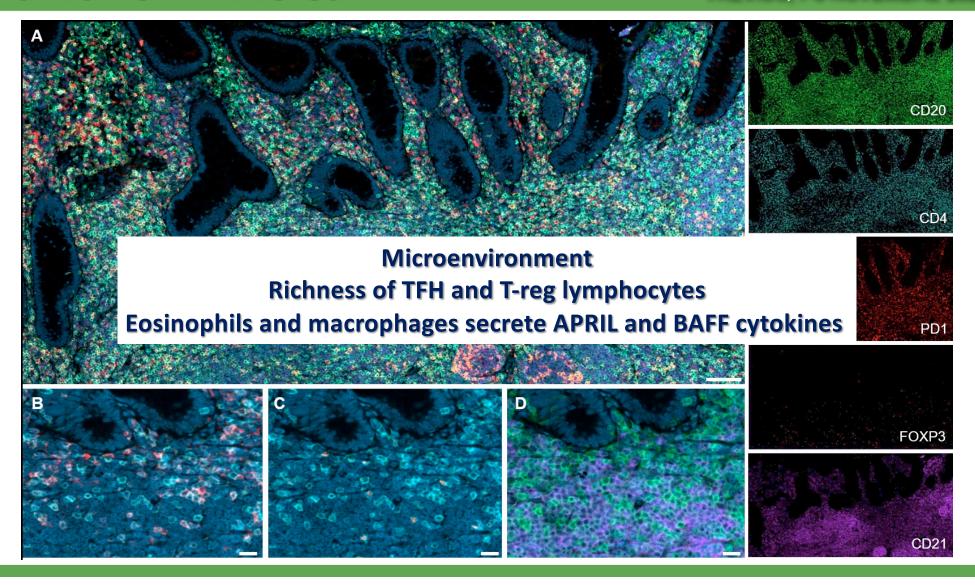
CD10⁻, BCL6⁻,

BCL-2+/- weak

^{*}plasma cell differentiation

Histopathology




Histopathology 2012 DOI: 10.1111/j.1365-2559.2012.04289.x

IRTA1 is selectively expressed in nodal and extranodal marginal zone lymphomas

Brunangelo Falini, Claudio Agostinelli, ¹ Barbara Bigerna, Alessandra Pucciarini, Roberta Pacini, Alessia Tabarrini, Flavio Falcinelli, Milena Piccioli, ¹ Marco Paulli, ² Marcello Gambacorta, ³ Maurilio Ponzoni, ⁴ Enrico Tiacci, Stefano Ascani, ⁵ Maria Paola Martelli, Riccardo Dalla Favera, ⁶ Harald Stein ⁷ & Stefano A Pileri ¹

B-cell marginal zone lymphoma Splenic	21	0*	0
Nodal	210	154	73
Extranodal	329	307	93
NOS	30	22	73

Abnormalities of TNFAIP3 on chromosome 6q23, which may include deletions, mutations, and promoter methylation, occur in 15-30% of cases, most frequently cases lacking specific translocations {657,1045,2898}. However, *TNFAIP3* abnormalities are not specific for MALT lymphoma, and can be found in many types of non-Hodgkin lymphoma {1681}. MYD88 L265P mutation has been reported in 6-9% of MALT lymphomas {1267, 2315,2860}.

TREVISO, 7-8 NOVEMBRE 2025

Features	EMZL
NF-kB pathway activation	Frequent (via translocation or TNFAIP3 mutation)
Chromosomes abnormalities	Trisomies 3 and 18, del 6q (TNFAIP3)
Recurrent translocations	t(11;18), t(14;18), t(3;14), t(1;14)
Key gene mutations	TNFAIP3, GPR34, KMT2D/2C, CREBBP, TET2, TBL1XR1.
IGHV usage	No characteristic association.

 \Rightarrow

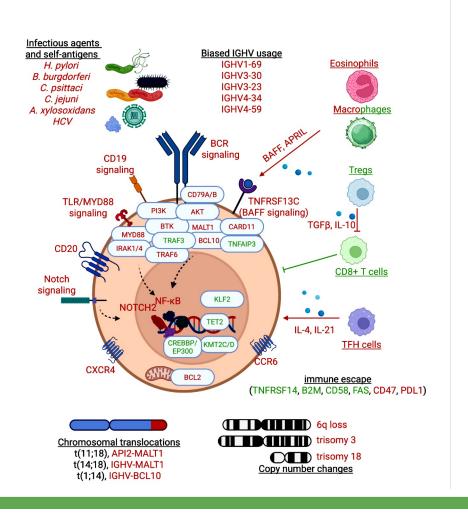
Blood (2025) E-pub ahead of print

Site	Translocations/trisomies	Mutations
Stomach	BIRC3::MALT1 (6-23%) IGH::MALT1 (1-5%) +3 (11%) +18 (6%)	NOTCH1 (17%) NF1 (16%) TNFAIP3 (15%) ATM (13%) TRAF3 (13%)
Occular adnexa/orbit	IGH::MALT1 (0-25%) FOXP1::IGH (0-20%) BIRC3::MALT1 (0-10%) +3 (38%) +18 (13%)	TNFAIP3 (39%) KMT2D (15%) CREBBP (10%) LRP1B (10%) MYD88 (10%)
Salivary gland	IGH::MALT1 (0-16%) BIRC3::MALT1 (0-5%) BCL10::IGH (0-2%) +3 (55%) +18 (19%)	TBL1XR1 (24%) GRP34 (16%) NOTCH2 (11%) SPEN (11%) KMT2C (11%)
Lung	BIRC3::MALT1 (31–53%) IGH::MALT1 (6–10%) BCL10::IGH (2–7%) +3 (20%) +18 (4%)	KMT2D (25%) TNFAIP3 (18%) PRDM1 (12%) NOTCH1 (12%) EP300 (11%)
Thyroid	FOXP1::IGH (0-50%) BIRC3::MALT1 (0-17%) +3 (17%)	TET2 (61%) TNFRSF14 (44% PIK3CD (23%) SPEN (17%) CREBBP (8%)

Virchows Archiv (2023) 482:149–162

TREVISO, 7-8 NOVEMBRE 2025

Features	EMZL
NF-kB pathway activation	Frequent (via translocation or TNFAIP3 mutation)
Chromosomes abnormalities	Trisomies 3 and 18, del 6q (TNFAIP3)
Recurrent translocations	t(11;18), t(14;18), t(3;14), t(1;14)
Key gene mutations	TNFAIP3, GPR34, KMT2D/2C, CREBBP, TET2, TBL1XR1.
IGHV usage	No characteristic association.



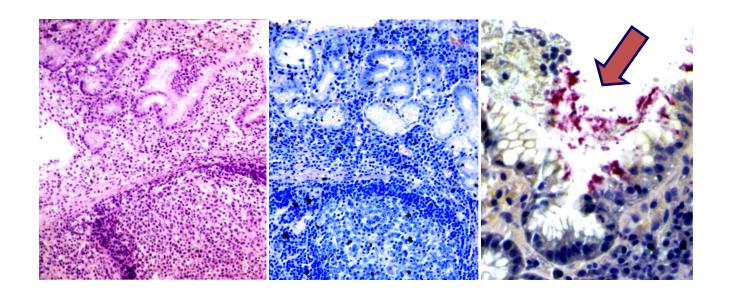
Site	Translocations/trisomies	Mutations
Stomach	BIRC3::MALT1 (6-23%) IGH::MALT1 (1-5%) +3 (11%) +18 (6%)	NOTCH1 (17%) NF1 (16%) TNFAIP3 (15%) ATM (13%) TRAF3 (13%)
Occular adnexa/orbit	IGH::MALT1 (0-25%) FOXP1::IGH (0-20%) BIRC3::MALT1 (0-10%) +3 (38%) +18 (13%)	TNFAIP3 (39%) KMT2D (15%) CREBBP (10%) LRP1B (10%) MYD88 (10%)
Salivary gland	IGH::MALT1 (0–16%) BIRC3::MALT1 (0–5%) BCL10::IGH (0–2%) +3 (55%) +18 (19%)	TBL1XR1 (24%) GRP34 (16%) NOTCH2 (11%) SPEN (11%) KMT2C (11%)
Lung	BIRC3::MALT1 (31–53%) IGH::MALT1 (6–10%) BCL10::IGH (2–7%) +3 (20%) +18 (4%)	KMT2D (25%) TNFAIP3 (18%) PRDM1 (12%) NOTCH1 (12%) EP300 (11%)
Thyroid	FOXP1::IGH (0-50%) BIRC3::MALT1 (0-17%) +3 (17%)	TET2 (61%) TNFRSF14 (44%) PIK3CD (23%) SPEN (17%) CREBBP (8%)

Blood (2025) E-pub ahead of print

Virchows Archiv (2023) 482:149–162

Extranodal marginal zone lymphoma

The most extensively studied form of MALT lymphoma corresponds to the gastric one, which in most if not all instances shows a pathobiological correlation with *Helicobacter Pylori* infection.


It represents a model, as other infectious agents involved such as Borrelia Burgdorferis in the skin, Chlamydia psittaci at the eye level, Chlamydia pneumoniae and Chlamydia trachomatis in the lung, and Campylobacter jejune in the intestine.

Gastric MZL and HP infection

- HP infection occurs in more than 95% of gastric MALTomas.
- The infection causes the development of the acquired gastric MALT, which is responsible for the onset of autoimmune phenomena.

 More often, it is sustained by the CagA⁺ strain, which causes IL8 release by the epithelial component, neutrophilic activation and genomic damage.

Acquired gastric MALT and HP infection

Gastric MZL: Clinics

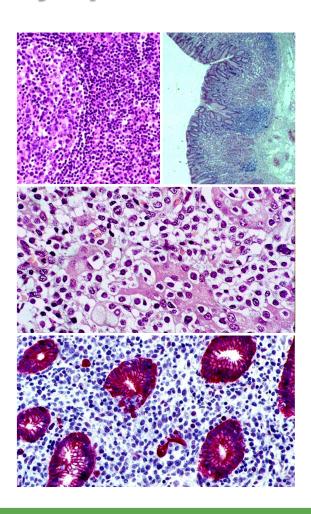
- Localised to the stomach for a long time.
- Late dissemination to:

loco-regional lymph nodes

Malpighi's corpuscles

bone-marrow (5-10%)

• In 50% of patients, regression with antibiotic therapy (HP eradication) even if transformed.

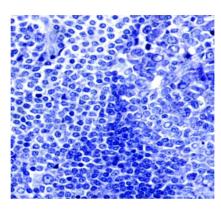

Gastric Marginal Zone Lymphoma

Architecture:

growth: peri-follicular,
diffuse,
follicle colonization,
multi-focal,
lympho-epithelial lesions (thyroid).
Blastic transformation (3-15%)

Depth of the infiltrate:

mucosa/sub-mucosa = regr.⁺
muscularis propria = regr.⁻
echo-endoscopy.



Gela histological scoring system for post-treatment biopsies of patients with gastric MALT lymphoma is feasible and reliable in routine practice **British Journal of Haematology, 2012, 160, 47–52**

Christiane Copie-Bergman, 1,2,3 Andrew C. Wotherspoon, Carlo Capella, Teresio Motta, Ennio Pedrinis, Stefano A. Pileri, Francesco Bertoni, Annarita Conconi, Emanuele Zucca, Maurilio Ponzoni and Andrés J. M. Ferreri

Histology (more reliable than PCR); time required: 2-14 months.

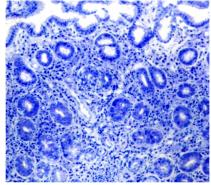


Table I. GELA histological grading system for post-treatment evaluation of gastric MALT lymphoma.

Score	Lymphoid infiltrate	LEL	Stromal changes
Complete Histological remission	Absent	Absent	Normal
(CR)	or		or
	scattered plasma cells and small lymphoid cells in		empty LP
	the LP		and/or
			fibrosis
Probable minimal residual disease	Aggregates of lymphoid cells	Absent	Empty LP
(pMRD)	or		and/or
	lymphoid nodules in the LP/MM and/or SM		fibrosis
Responding residual disease (rRD)	Dense, diffuse or nodular, extending around glands in the LP	Focal LEL or absent	Focal empty LP and/or fibrosis
No change (NC)	Dense diffuse or nodular	Present 'may be absent'	No changes

MM, muscularis mucosa; LP, lamina propria; SM, submucosa; LEL, lymphoepithelial lesions.

EGILS consensus report.

Recommendations

- ▶ Demonstration of monoclonality by PCR analysis of the rearranged immunoglobulin genes using the BIOMED-2 protocols is not a prerequisite for the diagnosis of gastric MALT lymphoma.
- Testing for translocation t(11;18) should be considered at diagnosis. During post-treatment follow-up routine clonality analysis is not recommended.

REVIEW

Mucosa-associated lymphoid tissue (MALT) lymphoma: a practical guide for pathologists

Chris M Bacon, Ming-Qing Du, Ahmet Dogan

J Clin Pathol 2007;60:361-372. doi: 10.1136/jcp.2005.031146

Resistance to antibiotic therapy!

Primary Cutaneous MZLPD

• PCMZLPD is a clonal disorder with excellent long-term survival (99% at 5 years) despite the risk of recurrence.

Virchows Archiv (2023) 482:281–298 https://doi.org/10.1007/s00428-022-03421-5

REVIEW

Recent advances in cutaneous lymphoma—implications for current and future classifications

JR Goodlad¹ • L Cerroni² · SH Swerdlow³

